
PyUt 1.1

PyUt

Python UML Tool

Quality Management

11th July 2002

Abstract

This little documentation provides the main rules for writing code for PyUt, little
UML 1.3 editor.

1 General Information

Quality for the PyUtproject is fundamental for many reasons. Here are some of the most
important :

• Each developer has his own coding preferences. Try to read code written by someone
else, it’s always crazy. From my point of view, it may even be the main cause of the
NIH1 syndrom (just try to imagine how many list handling packages have been written
for the last ten years). Having the same writing conventions make code easier to read,
even if, when you write it, you have to follow rules too (not so easy in the beginning
but quickly adopted).

• Quality makes more robust code. It’s easier to find some bugs if the code is clearly
commented.

• Try to read some C codes not well indented. For this, Python is great, you will not
have the choice.

In conclusion for the introduction, I’ll say that quality rules are necessary for a GPL project
to allow developers may speak the same language between them.

For external developers that would like to submit code, I have to told you that your code has
to respect quality rules or it may be rejected. This document also assume that you know the
basics of pydoc and javadoc, used for technical documentation.

As you can see, we have chosen to write all code and documentation (except project report)
in english.

1Not Invented Here

Quality documentation 1 / 3 P. Waelti

PyUt 1.1

2 Quality rules

Ok, let’s see these rules. Please contact the team if you think some rules have been forgotten
or if you have any comments about them (Quality manager : <pwaelti@eivd.ch>).

2.1 Cosmetic

Tabulations
Tabulations are four spaces (real spaces, not four spaces tabs), position spec-
ified by the programming language Python. The length of a line must not
exceed 78 characters.

Expressions
Spaces should be introduced between operator signs, assignement operations
and after each ’,’ separator.

Names
Names in general should not contain any underline or special characters.
Words separations are done with an uppercase letter. Classes always begins
with an uppercase letter, variables with a lowercase one. Examples :

A class definition
class PyutApp

Variables and functions declarations
def myFunction(anInt, ...):

myIntVar = anInt

Headers
There are two main headers : classes and functions headers. Classes headers
should explain in detail what the class does. This header is formatted in
reStructuredText, which may become a standard for documentation strings
in the future. Function header is written using the usual javadoc style.
Here are the templates :

"""
Short description of the class (1 line max) ended by a dot.
Mandatory complete description of the class:

- what it’s for
- how it works
- sample use case

reStructuredText samples:
- *Important* thing, or **vital** thing.
- ‘className‘ or ‘methodName‘ or ‘paramName‘

Example of code::
anObject.doThat()

Quality documentation 2 / 3 P. Waelti

PyUt 1.1

another.sayHello()

:version: $Revision: 1.4 $
:author: Laurent Burgbacher
:contact: lb@alawa.ch
"""

This is a class header. The revision id ($Revision: 1.4 $) is automatically
set by CVS. The complete description of the class is essential.

def method(self, param1, param2):
"""
Short description of what this method does, ended by a dot.
Long description if needed.

@param type name : Description
@param type name : Description
@return type : What this function returns
@since 1.0
@author Name <email>
"""

This is a method header. Particular parameters type for Python may be
represented with they’re usual notations (lists : [], ...). The @since ...
tag indicates the version from which the method available. For example, if
Revision is 1.2, method will have the tag @since 1.3.

Separators
Each method has to be separated from one another using a line like this one
and ends to the 78th column :

#>-----------------------------------...

Quality documentation 3 / 3 P. Waelti

	General Information
	Quality rules
	Cosmetic

